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Momentum twistor was introduced by Andrew Hodges for the study of maximally supersym-
metric theories. However, it is also very useful for simplifying spinor helicity expressions.

A momentum twistor is defined as
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Holomorphic A;, and anti-holomorphic p; j are the basic objects in this formalism. The spinor
helicity anti-holomorphic spinor is derived as,
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I. FOUR-POINT MOMENTUM TWISTOR

‘We use the choice
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Then (12) = —1, [12] = z1, (14) = —1 and [14] = z2. Hence we can replace
rK— S, X2 —1 (5)

Exercise For the four-point massless kinematics, try to convert
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to a function of Mandelstam variables.
Solution From the momentum twistor formula, (12) = —1, (34) = —1/x9, (13) = —1 and (24) =
—1/x1 — 1/x9. Then
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Now this computation is straightforward.
Claim For the four-point massless kinematics, any helicity-free and rational function of spinor

product, is a rational function of 1 and x2, and hence a rational function of s and ¢.

II. FIVE-POINT MOMENTUM TWISTOR

In this case, the conversion between spinor helicity and momentum twistor variables are more
complicated. On the other hand, since the five-point kinematics is intrinsically complicated, the
five-point momentum twistor has a great advantage in real computations.

For the five-point massless kinematics, p? =0, i =1,...5, p1 + ...+ ps = 0, we usually use
S12, S23, 34, S45, Si5 (8)

as the independent Mandelstam variables. There is one Gram determinant
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Note that €(1,2,3,4)%2 = —g(1,2,3,4). €(1,2,3,4) is not a rational function of Mandelstam vari-

ables. For convenience, we define
trs = 4ie(1,2,3,4) (10)
We use the momentum-twistor choice,
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This was my choice in [I] and it was not the first choice nor the optimal choice. However, in [I]
we first give the explicitly conversion formula.

From this choice, we have,
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812 = T1, 823 = X2T4, S34 =

S45 = T2 ($4 — .7}5) s S15 = —I3 (x5 - 1) (12)



Note that the inverse map (s12, S23, S34, S45, S15) t0o (21, T2, T3, x4, x5) is not well defined since the
above maps is not injective. For a generic value of s’s, there are two sets of corresponding x’s.
This problem can be resolved by the double covering trick. Instead of considering

¢

(s12, $23, S34, S45, S15), we consider the “variety” (s12, $23, S34, S45, S15, tT5) with the constraint tr?) =

16¢(1,2,3,4). By this, we have the well-defined inverse map [I] ,
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o —512515 + S12823 + 23534 + S15545 — $34S45 — tr'5 (14)
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xr3 = — ! (s23trs — s45trs + 8128%3 - 834533 — 512515523
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— 512545523 — S15545523 + 2534545523 + S15515 — 534515 — S12515545) (15)
S12815 — S$12823 — $23534 — S15545 T S$34545 — tr'5

2512 (S15 — 523 + S45)
(823 — 845) (—512515 + 512523 + 523534 + S15545 — 534545 + t15)

2512523 (—S15 + S23 — Sa45) (17)
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So we have a “birational” map between (x1, z2, 3, x4, x5) and (s12, S23, S34, S45, S15, tT5).
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